슬롯 사이트 슬롯사이트에 대항하는 맘바 + 마트료시카 연합군
* 이 글은 AI 전문 뉴스레터'튜링 포스트 코리아'에 기고한 글의 일부입니다. AI 기술, 스타트업, 산업과 사회에 대한 이야기에 관심이 있으시면'튜링 포스트 코리아' 구독해 주세요.
여러분, ‘마트료시카’라는 인형을 아시나요? 러시아의 전통 인형이고, 다산, 다복, 부유함과 행운을 가져오는 인형이라고 해서 기념품으로 한 때 유명했던 기억이 있습니다.
전통 인형이기는 한데, 러시아의 다른 전통 인형과 비교하자면 마트료시카의 탄생 자체가 1890년으로 역사는 아주 짧다고 해요. 러시아의 철도왕이었다는 사바 마몬토프가 일본에 갔다가 일본의 칠복신 (七福神, 시치후쿠진) 인형, 특히 복록수 (福禄寿, 후쿠로쿠주)를 보고 큰 인상을 받아서, 러시아에 귀국한 다음에 예술가들에게 인형을 보여주고 비슷한 인형을 만들도록 한 게 바로 마트료시카의 시작이라고 하네요.
뜬금없이 마트료시카와 슬롯 사이트 슬롯사이트가 무슨 상관이냐고 생각하시겠죠?하나는 인형을 열면 그 안슬롯 사이트 슬롯사이트 계속해서 조금씩 더 작은, 숨겨져 있던 인형이 나오는 러시아 전통 예술의 상징, 다른 하나는 환경과 상황에 빠르게 적응하면서 다양한 형태로 변화할 수 있는 미래적인 로봇이니까요.
네, AI 판슬롯 사이트 슬롯사이트는 상관이 있습니다 ^.^ -‘마트료시카 (Matryoshka)’가, 우선 먼저는슬롯 사이트 슬롯사이트 아키텍처 내에서 더 좋은 임베딩을 만들어내는 노믹 임베드의 마트료시카 표현 학습 (Matryoshka Representation Learning) - 임베딩 차원을 가변적으로 다양하게 만들어서 모델이 더 많은 정보를 잡아낼 수 있게 하는 기법 - 에서 사용되었죠.또 하나는, 당당히 슬롯 사이트 슬롯사이트와 경쟁하는 아키텍처로서 ‘마트료시카’라는 이름을 사용하고 있습니다.
첫 번째에 해당하는 개념은, 2023년 구글 리서치의 연구자들이MatFormer를 발표했을 때 소개되었는데요.
이 모델에서는, 각각의 슬롯 사이트 슬롯사이트 블록이 그 안에 중첩된 서브 블록으로 설계되어 있는데, 여기서더 작은 하위 슬롯 사이트 슬롯사이트들이 더 큰 슬롯 사이트 슬롯사이트 안에 포함되어 있습니다 - 마트료시카 인형의 층처럼요. 이런 구조로, 슬롯 사이트 슬롯사이트이 별도의 훈련이 없어도 단일한 범용 슬롯 사이트 슬롯사이트에서 다양한 크기의 하위 슬롯 사이트 슬롯사이트을 필요에 따라 다이나믹하게 뽑아내서 활용할 수 있으니, 어떤 모달리티든, 어떤 작업이든 유연하게 스케일링을 할 수도 있고 추론도 탄력적으로 할 수가 있게 되는 겁니다. 이 방법을마트료시카 표현 학습 (Matryoshka Representation Learning)이라고 부릅니다.
그런데, 우리 모두 알다시피,최근 슬롯 사이트 슬롯사이트 아키텍처는 점점 더 많은 비판을 맞닥뜨리고있죠. 예를 들어, AI21의 CEO인 Ori Goshen은슬롯 사이트 슬롯사이트의 아성에 의문을 던집니다 -슬롯 사이트 슬롯사이트 모델에 의존하는 에이전트들은, 그 효율성과 비용 측면에서 성공하기 힘들다고 주장하면서, (당연하게도)Mamba를 기반으로 한 AI21의 Jamba 아키텍처가 더 빠르고, 더 믿을 수 있고, 더 나은 메모리 효율을 보여주는 AI 에이전트의 기반이 될 수 있다고 이야기합니다. (Jamba를 비롯한 다양한 Mamba 아키텍처에 대한 소개는,튜링 포스트 코리아의 ‘Mamba 아키텍처 관련 연구 15選’을 한 번 참조해 주세요)
글쎄요…Mamba 좋죠. 이전에튜링 포스트의 기사슬롯 사이트 슬롯사이트 한 번 커버했듯이, Mamba는 그야말로 실제로 슬롯 사이트 슬롯사이트와 한 번 경쟁해 볼 만한 모델입니다.
그런데 말입니다. 이Mamba에, 마트료시카를 결합해서 슬롯 사이트 슬롯사이트에 더 큰 타격을 줄 수 있다면어떨까요?
바로 워싱턴 대학의 연구자들, 그리고 Scaled Foundations - 로봇 인텔리전스를 연구하는 기관입니다 - 의 연구자들이 그런 생각을 했습니다…!
이 친구들이 10월 9일 발표한‘MatMamba’는마트료시카 표현 학습을 Mamba2의상태 공간 슬롯 사이트 슬롯사이트 (SSM; State Space Model)에 통합해서,파라미터 전반에 걸쳐서 유연하고 중첩된 아키텍처를 만들었습니다. 이렇게 설계된 아키텍처는,재훈련이 필요없이 하나의 큰 슬롯 사이트 슬롯사이트로부터 여러 개의 작은 슬롯 사이트 슬롯사이트을 추출할 수 있도록 해 주는데,각각의 하위 슬롯 사이트 슬롯사이트은 중요한, 학습된 표현을 유지하면서 다양한 크기에서도 일관된 성능을 보장합니다.
앞서 언급된 MatFormer나 기본적인 슬롯 사이트 슬롯사이트와 비교해서는,MatMamba는 SSM을 백본으로 사용하고, 다양한 컴퓨팅 요구사항에 대해서 더 세분화해서 적응해 가면서 스케일링을 할 수 있기 때문에, 특히 긴 시퀀스에 대해서 추론을 빠르게할 수 있습니다. 예를 들자면, 자원이 제한되어 있는 엣지 디바이스에서도, MatMamba는 재훈련을 하지 않고 다이나믹하게 더 작은 슬롯 사이트 슬롯사이트을 추출할 수 있어서, 가용 메모리나 컴퓨팅 파워에 맞춰서 추론 작업을 조정할 수 있습니다 - 바로 이런 게슬롯 사이트 슬롯사이트의 경우 좀 경직된 아키텍처 때문에 어려움을 겪는 부분이죠.
클라우드 기반의 시스템에서도, 추론의 시나리오에서 컴퓨팅 자원의 변동성이 큰 경우에는, MatMamba가 가진 하위 모델 간의 유연한 전환 능력이 전체적인 시스템으로 하여금 효율적으로 실시간 스케일링을 가능하게 해 줍니다. 슬롯 사이트 슬롯사이트가 ‘범용 작업’의 세계를 집어삼켰다고 한다면,MatMamba는 실시간 비디오 분석이라든가 대규모의 이미지 검색 같이, ‘긴 컨텍스트가 주요 환경이고 배포나 운용을 탄력적으로 해야 하는 영역’에서는 슬롯 사이트 슬롯사이트를 충분히 능가할 수 있다고 봅니다.
물론 현실적으로 볼 때,MatMamba가 모든 상황에서 슬롯 사이트 슬롯사이트를 완전히 대체할 가능성은 낮다고 봐야겠죠 - 두 슬롯 사이트 슬롯사이트은, 각각 다른 성격의 작업에서 뛰어난 성능을 보이는 슬롯 사이트 슬롯사이트들입니다. 대신, 현재의 흐름으로슬롯 사이트 슬롯사이트 일변도인 시장에서, 높은 효율성, 그리고 적응력있고 확장성있는 추론이 요구되는 어플리케이션에서라면, MatMamba가 차지할, 충분히 큰 틈새 시장이 있을 것으로 보입니다.
앞으로 다중 에이전트 생태계가 출현하고 확산된다면, 이보다 더 많은 슬롯 사이트 슬롯사이트의 대안을 만들고 활용하려는 시도가 더욱 주목받는 시기가 오게 되리라 생각합니다.